One Problem at a Time

Applications: Approximation of Area

Problem 247: Consider the integral

(1)   \begin{equation*} \int_{5}^{9} \left( \frac{2}{x} + 1\right) \ dx \end{equation*}

(a) Find the Riemann sum for this integral using right endpoints and n=4.

(b) Find the Riemann sum for this same integral, using left endpoints and n=4.

Solution: The Riemann sum is given by

(2)   \begin{equation*} R_n = \sum_{i=1}^{n} f(x_i) \Delta x, \end{equation*}

where n is the number of triangles we use and Delta x is the size of the width of the rectangles.

(a) In this case, n= 4. Since we are using rectangles with the same size, we have

(3)   \begin{equation*}\Delta x = \frac{b-a}{n} = \frac{9-5}{4}=\frac{4}{4} = 1. \end{equation*}

Using (1), we have

(4)   \begin{equation*} R_4 =  \sum_{i=1}^{4}f(x_i) \cdot 1. \end{equation*}

The only thing we are missing now is the x_i. Since we are using right endpoints, we will go from a=5 to i by a step of \Delta x. That is, x_i = 5 + \Delta x \cdot i. Therefore,

(5)   \begin{align*} R_4 & = \sum_{i=1}^{4}f(x_i) \cdot 1 \\ & = f(x_1) + f(x_2) + f(x_3) + f(x_4) \\ & = \left(\frac{2}{x_1} +1\right) + \left(\frac{2}{x_2} +1\right) + \left(\frac{2}{x_3} +1\right) + \left(\frac{2}{x_4} +1\right) \\ & = \left(\frac{2}{5+1} +1\right) + \left(\frac{2}{6+1} +1\right) + \left(\frac{2}{7+1} +1\right) + \left(\frac{2}{8+1} +1\right) \\ & = \left(\frac{2}{6} +1\right) + \left(\frac{2}{7} +1\right) + \left(\frac{2}{8} +1\right) + \left(\frac{2}{9} +1\right) \\ & = \frac{1}{3} + \frac{2}{7} + \frac{1}{4} + \frac{2}{9} + 4 \\ & = 5.09126984126984.\end{align*}

(b) In this case, the only thing that change is the x_i since we are using left endpoints. We have x_i = a + \Delta x(i-1). That is, x_i= 5 - 1 = 4.

(6)   \begin{align*} R_4 & = \sum_{i=1}^{4}f(x_i) \cdot 1 \\ & = \left(\frac{2}{x_1} +1\right) + \left(\frac{2}{x_2} +1\right) + \left(\frac{2}{x_3} +1\right) + \left(\frac{2}{x_4} +1\right) \\ & = \left(\frac{2}{4+1} +1\right) + \left(\frac{2}{5+1} +1\right) + \left(\frac{2}{6+1} +1\right) + \left(\frac{2}{7+1} +1\right) \\ & = \left(\frac{2}{5} +1\right) + \left(\frac{2}{6} +1\right) + \left(\frac{2}{7} +1\right) + \left(\frac{2}{8} +1\right) \\ & = \frac{2}{5} + \frac{1}{2} + \frac{2}{7} + \frac{1}{4} + 4 \\ & = 5.26904761904762.\end{align*}

Leave a Reply

Your email address will not be published. Required fields are marked *