One Problem at a Time

Integration – Partial Fractions

Problem 234: Evaluate the integral

(1)   \begin{equation*} \int \frac{x^2}{x^2 + 64} \ dx \end{equation*}

Solution: First, we are going to use long division to rewrite our integral. That is, using long division,

(2)   \begin{equation*} \frac{x^2}{x^2 + 64} = 1 -\frac{64}{x^2 + 64}.\end{equation*}

One can now use this to rewrite our integral and integral. Thus,

(3)   \begin{align*} \frac{x^2}{x^2 + 64} &= 1 -\frac{64}{x^2 + 64} \\ \int \frac{x^2}{x^2 + 64} \ dx & = \int 1 - 64\frac{1}{x^2 + 64} \ dx \\ & = \int 1 \ dx - \int \frac{64}{x^2 + 64} \ dx \\ & = x - 64 \int \frac{1}{(x)^2 + (8)^2} \ dx \\ & = x - 64 \cdot \frac{1}{8} \cdot \tan^{-1}\left(\frac{x}{8} \right)  + C \\ & = x - 8\tan^{-1}\left( \frac{x}{8}\right)+C\end{align*}

That is,

(4)   \begin{equation*}\int \frac{x^2}{x^2 + 64} \ dx  = x - 8\tan^{-1}\left( \frac{x}{8}\right)+C. \end{equation*}

Leave a Reply

Your email address will not be published. Required fields are marked *