One Problem at a Time

Finding the Function at A Point from the Integral

Problem 188: Find f(4) if

(1)   \begin{equation*} \int_{0}^{x} f(t) dt = x \cos \pi x \end{equation*}

.

Solution: Using the Fundamental Theorem of Calculus (Part 1), we have

(2)   \begin{align*} \int_{0}^{x} f(t) dt  & = x \cos \pi x \\ \frac{d}{dx} \left( \int_{0}^{x} f(t) dt  \right) & = \frac{d}{dx} \left( x \cos \pi x\right) \\ f(x) & = \cos \pi x - \pi x \sin \pi x \\ f(4) & = \cos(4 \pi) - 4\pi \sin(4\pi).\end{align*}

Hence,

(3)   \begin{equation*} f(4) = \cos(4 \pi) - 4\pi \sin(4 \pi).\end{equation*}

Leave a Reply

Your email address will not be published. Required fields are marked *