One Problem at a Time

The Number e as a Limit

Problem 157: Show that the number e can be calculated as the limit

(1)   \begin{equation*} e = \lim_{x \to 0}(1+x)^{1/x}.\end{equation*}

Solution: Let f(x) = \ln(x). Then f'(x) = \frac{1}{x} = 1 at x=1. But using the definition of derivative,

(2)   \begin{align*} f'(x) & = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \\ f'(1) & = \lim_{h \to 0} \frac{f(1+h)-f(1)}{h} \\ & = \lim_{x \to 0} \frac{f(1+x)-f(1)}{x} \\ & = \lim_{x \to 0} \frac{\ln(1+x)-\ln(1)}{x} \\ & = \lim_{x \to 0} \frac{\ln(1+x)}{x} \\ & = \lim_{x \to 0} \ln(1+x)^{1/x} \\ & = \ln \left( \lim_{x \to 0} (1+x)^{1/x} \right) \quad \text{(ln is continuous)}. \end{align*}

Because f'(1)=1 and f'(1) is given by (2), they must be equal. That is,

(3)   \begin{align*} 1 & = \ln \left( \lim_{x \to 0} (1+x)^{1/x} \right) \\ e^1 & = e^{ \ln \left( \lim_{x \to 0} (1+x)^{1/x} \right) } \\ e & = \lim_{x \to 0}(1+x)^{1/x}. \end{align*}

That is,

(4)   \begin{equation*} \boxed{e & = \lim_{x \to 0}(1+x)^{1/x}}.\end{equation*}

Leave a Reply

Your email address will not be published. Required fields are marked *