One Problem at a Time

Second Order ODE with Repeated Roots

Problem 128:

(a) Find the general solution to y'' -12y' + 36y = 0.

(b) Find the particular solution that satisfies y(0) = 7 and y'(0) = 44.

Solution: The general solution of a second order ODE with repeated roots is given by

(1)   \begin{equation*} y(t) = c_1e^{r_1t} + c_2 t e^{r_2t}\end{equation*}

where r_1 and r_2 are the roots of the characteristic polynomial.

(a) Let y = e^{rt} so that y' = re^{rt} and y'' = r^2e^{rt}. This means that

(2)   \begin{align*} y'' -12y' + 36y & = 0 \\ r^2e^{rt} -12re^{rt} + 36e^{rt} & = 0 \\ r^2 - 12r + 36 & = 0 \\ (r-6)(r-6) & = 0 \\ & \Rightarrow r_1 = 6, r_2 = 6. \end{align*}

Hence, using (1), the general solution is given by

(3)   \begin{equation*} y(t) = c_1e^{6t} + c_2te^{6t}. \end{equation*}

(b) Let’s now find the particular solution. First, we will find c_1 using the condition y(0) = 7.

(4)   \begin{align*} c_1e^{6 \cdot 0} + c_2 \cdot 0 \cdot e^{6 \cdot 0} & = 7 \\ c_1 \cdot e^0 & = 7 \\ c_1 & = 7. \end{align*}

Then (3) takes the following form

(5)   \begin{equation*} y(t) = 7e^{6t} + c_2te^{6t} \quad \Rightarrow \quad y'(t) = 42e^{6t} + c_2e^{6t} + 6c_2te^{6t}.\end{equation*}

Using our second condition, that is, y'(0) = 44

(6)   \begin{align*} \42e^{6\cdot 0} + c_2e^{6 \cdot 0} + 6c_2 \cdot 0 \cdot e^{6 \cdot 0} & = 44 \\ 42 + c_2 \cdot e^{0} & = 44 \\ 44 + c_2 & = 44 \\ c_2 & = 2. \end{align*}

Therefore, the particular solution is given by

(7)   \begin{equation*} y(t) = 7e^{6t} + 2te^{6t}. \end{equation*}

Leave a Reply

Your email address will not be published. Required fields are marked *