One Problem at a Time

Intercepts of Rational Functions

Problem 270: For the function

    \[f(x) = \frac{8x-3}{x^2 + 12x + 35}.\]

Find the y– and x– intercepts.

Solution: To find the y intercept, we let x = 0.

    \begin{align*} f(x) = y & = \frac{8x-3}{x^2 + 12x + 35} \\ & = \frac{8(0)-3}{(0)^2 + 12(0) + 35} \\ & = \frac{-3}{7(5)} \\ & = -\frac{3}{35}. \end{align*}

That is, the y-intercept is (0, -3/35).

To find the x intercept, we let y = 0.

    \begin{align*} \frac{8x-3}{(x + 7)(x + 5)} = 0 \implies  8x - 3 = 0 \implies x = \frac{3}{8}\end{align*}


Therefore, the x-intercept is (3/8, 0).

Leave a Reply

Your email address will not be published. Required fields are marked *