One Problem at a Time

Using Long Division to Divide Polynomial

Problem 259: Compute the quotient of (-25x^3 - 25x^2 - 16x - 4) \div (-5x - 2).

Solution: Rewrite the problem as a long division problem.

    \[-5x - 2 \overline{) -25x^3 - 25x^2 - 16x - 4}\]

One can now perform the long division.

    \[\begin{matrix} 5x^2 + 3x + 2 \\ -5x - 2 \overline{) -25x^3 - 25x^2 - 16x - 4} \\ \underline{-(-25x^3 - 10x^2)} \\ \qquad \qquad \qquad \qquad \qquad -15x^2 - 16x - 4 \\ \qquad \qquad \qquad \qquad \underline{-(-15x^2 - 6x)} \\  \qquad \qquad \qquad \qquad \qquad  \qquad -10x - 4 \\ \qquad \qquad \qquad \qquad \qquad \qquad  \underline{-(-10x-4)} \\ \qquad \qquad \qquad \qquad \qquad  \qquad \qquad 0 \end{matrix}\]

The answer is given by the quotient. That is, 5x^2 + 3x + 2.

Leave a Reply

Your email address will not be published. Required fields are marked *