One Problem at a Time

Calculating the Difference Quotient

Problem 254: Consider f(x) = 3x^3 + 3x - 38. Calculate

    \[\frac{f(a+h) - f(a)}{h}.\]

Solution: One can compute the pieces of the quotient first and then put it all together.

  • f(a) = 3a^3 + 3(a) - 38=3a^2 + 3a - 38
  • f(x) = 3x^3 + 3x - 28

    \begin{align*} f(a +h) & = 3(a+h)^3 + 3(a + h) - 38 \\ & = 3(a + h)^2(a+h) + 3a + 3h - 38 \\ & = 3(a+h)(a^2 + 2ah + h^2) + 3a + 3h - 38 \\ & = (3a + 3h)(a^2 + 2ah + h^2) + 3a + 3h - 38 \\ & = 3a^3 + 9a^2h + 9ah^2 + 3a + 3h - 38 \end{align*}

Putting it all together we have.

    \begin{align*} \frac{f(a+h) - f(a)}{h} & = \frac{3a^3 + 9a^2h + 9ah^2 + 3a + 3h - 38 - (3a^2 + 3a - 38)}{h} \\ & = \frac{3a^3 + 9a^2h + 9ah^2 + 3a + 3h - 38 - 3a^2 - 3a + 38}{h} \\ & = \frac{9a^2h + 9ah + 3h}{h} \\ & = 9a^2 + 9a + 3.\end{align*}

Leave a Reply

Your email address will not be published. Required fields are marked *