One Problem at a Time

Radius of Converge of Series

Problem 250: The power series of f(x)=e^x around x = -2 is given by

(1)   \begin{equation*} f(x) = \sum_{n=0}^{\infty} \frac{e^{-2}}{n}(x+2)^2 .\end{equation*}

Find the radius of convergence.

Solution: One can use the ratio test to find the radius of convergence. That is, we an L value such that

(2)   \begin{equation*} L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1 \end{equation*}

for all x. Thus

(3)   \begin{align*} \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} & = \lim_{n \to \infty} \frac{|\frac{e^{-2}}{(n+1)!}(x+2)^{n+1}|}{|\frac{e^{-2}}{n!}(x+2)^n|} \\ & = \lim_{n \to \infty} \left( \frac{n!}{(n+1)!}\right)|x+2| \\ & = \lim_{n \to \infty} \left( \frac{1}{n+1}\right)|x+2| \\ & = 0 \cdot |x+2|. \end{align*}

That is, we want

(4)   \begin{equation*} L = 0 \cdot |x+2| < 1, \end{equation*}

which is true for all x values. Therefore, the radius of convergence is (-\infty, \infty) or R = \infty.

Leave a Reply

Your email address will not be published. Required fields are marked *