One Problem at a Time

Mathematical Induction

Problem 159: Using mathematical induction, show that for n > 1

(1)   \begin{equation*} \frac{d^n}{dx^n} \ln x = (-1)^{n-1} \frac{(n-1)!}{x^n}. \end{equation*}

Solution: Since we will use mathematical induction to prove (1), we need to prove the base case and the inductive case. That is,

Base Case: Let n = 2. Then

(2)   \begin{align*} \frac{d^n}{dx^n} \ln x & = (-1)^{n-1} \frac{(n-1)!}{x^n} \\ \frac{d^2}{dx^2} \ln x & = (-1)^{2-1} \frac{(1)!}{x^2} \\ -\frac{1}{x^2} & = - \frac{1}{x^2}.\end{align*}

Inductive Case: We assume that (1) holds for n = k. We will show that it also holds for n = k+1. That is,

(3)   \begin{align*} \frac{d^{k+1}}{dx^{k+1}} \ln x & = (-1)^{k+1-1} \frac{(k+1-1)!}{x^{k+1}} \\ & = \frac{(-1)^{k} k!}{x^{k+1}} \\ & = \frac{(-1)^{k}k (k-1)!}{x^k \cdot x} \\ & = - \frac{k}{x} \cdot \underbrace{\frac{(-1)^{k-1}(k-1)!}{x^k}}_{= \ (1)} \\ & =  -\frac{k}{x} \cdot \frac{d^k}{dx^k} \ln x \\ \frac{1}{x} \frac{d^k}{dx^{k}} \ln x & = - \frac{k}{x} \cdot \frac{d^k}{dx^k}. \ln x\end{align*}

It must be the case that k = -1 so that it proves (1).

Leave a Reply

Your email address will not be published. Required fields are marked *