One Problem at a Time

Derivative of Inverse CSC

Problem 158: Use the Identity

(1)   \begin{equation*} \csc^{-1} u = \frac{\pi}{2} - \sec^{-1}u\end{equation*}

to derive the formula for the derivative of \csc^{-1} u.

Solution: Using the identity (1), we have

(2)   \begin{align*} \csc^{-1} u & = \frac{\pi}{2} - \sec^{-1}u \\ \frac{d}{du} \csc^{-1} u & = \frac{d}{du} \left( \frac{\pi}{2} - \sec^{-1} u \right) \\ & = - \frac{d}{du} \sec^{-1} u \\ & = - \frac{1}{|u| \sqrt{u^2-1}} , \ |u| > 1. \end{align*}

That is,

(3)   \begin{equation*} \frac{d}{du} \csc^{-1} u = - \frac{1}{|u|\sqrt{u^2-1}}, \ |u| > 1. \end{equation*}

Leave a Reply

Your email address will not be published. Required fields are marked *