One Problem at a Time

Limit Laws

Problem 146: If \lim_{x \to 4} \frac{f(x)-5}{x-2} = 1, find \lim_{x \to 4} f(x).

Solution: We will use the limit laws to solve this problem.

(1)   \begin{align*} \lim_{x \to 4} \frac{f(x)-5}{x-2} & = 1 \\ \frac{\lim_{x \to 4} f(x) - 5}{\lim_{x \to 4} x - 2} & = 1 \\ \lim_{x \to 4} f(x) - 5 & = 1 \cdot \left({\lim_{x \to 4} x - 2}\right) \\ \lim_{x \to 4} f(x) & = 1 \cdot \left({\lim_{x \to 4} x - 2}\right) + 5 \\ & = 4-2+5 = 7. \end{align*}

That is,

(2)   \begin{equation*} \boxed{ \lim_{x \to 4} f(x) = 7}.\end{equation*}

Leave a Reply

Your email address will not be published. Required fields are marked *