One Problem at a Time

Laplace Transform with Initial Value Problems (IVPs)

Problem 129: Consider the initial value problem

(1)   \begin{equation*} y'' + 9y = 36t, \qquad y(0) = 7, \quad y'(0) = 2.\end{equation*}

(a) Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s).

(b) Solve your equation for Y(s).

Solution: First, let’s highlights some of the things we need to solve this problem. That is,

(2)   \begin{align*} \mathcal{L} \{y''\} & = s^2 \mathcal{L}\{y\} - sy(0) - y'(0), \\ \mathcal{L}\{y\} & = Y(s), \text{and} \\ \mathcal{L}\{36 t\} & = \int_{0}^{\infty} 36t \cdot e^{-2t} \ dt = \frac{36}{s^2}.\end{align*}

(a) Let’s now find the corresponding Laplace transform.

(3)   \begin{align*} y'' + 9y & = 36t \\ \mathcal{L}\{y''\} + \mathcal{L}\{9y\} & = \mathcal{L}\{36t\} \\ \mathcal{L}\{y''\} + 9\mathcal{L}\{y\} & = 36\mathcal{L}\{t\} \\ s^2\mathcal{L}\{y\} - sy(0) - y'(0) + 9 \mathcal{L}\{y\} & = \frac{36}{s^2} \\ s^2 Y(s) - 7s - 2 + 9 Y(s) & = \frac{36}{s^2} \\ (s^2+9)Y(s) - 7s - 2 & = \frac{36}{s^2}.\end{align*}

(b) One can now some for Y(s).

(4)   \begin{align*} (s^2+9)Y(s) - 7s - 2 & = \frac{36}{s^2} \\ (s^2 + 9) Y(s) & = \frac{36}{s^2} + 7s + 2 \\Y(s) & = \frac{36}{s^2 \cdot (s^2+9)} + \frac{7s}{s^2+9} + \frac{2}{s^2+9} \\ \mathcal{L}\{y(t)\} & = \frac{36}{s^2 \cdot (s^2+9)} + \frac{7s}{s^2+9} + \frac{2}{s^2+9} .\end{align*}

That is, we can now find the solution y(t) by taking the inverse Laplace transform.

(5)   \begin{equation*} y(t) = \mathcal{L}^{-1}\bigg\{\frac{36}{s^2 \cdot (s^2+9)} + \frac{7s}{s^2+9} + \frac{2}{s^2+9} \bigg\}.\end{equation*}

Leave a Reply

Your email address will not be published. Required fields are marked *