One Problem at a Time

Derivative at A Point

Problem 125: Calculate f'(1) of

(1)   \begin{equation*} f(x) = \ln\left(\frac{e^{2x}}{x(x-2)^2} \right). \end{equation*}

Solution: We have two different options to find the derivative of (1). First, I will expand the logarithm using properties of logarithm. Then I will find the derivative and evaluate. That is,

(2)   \begin{align*} f(x) & = \ln\left(\frac{e^{2x}}{x(x-2)^2} \right) \\ & = \ln(e^{2x}) - \ln(x(x-2)^2) \qquad (\ln(a/b) = \ln(a) - \ln(b)) \\ & = 2x\ln(e) - \ln(x) - \ln(x-2)^2 \qquad (\ln(a \cdot b) = \ln(a) + \ln(b)) \\ & = 2x - \ln(x) - 2 \ln(x-2) \qquad (\ln(a^b) = b\ln(a)).\end{align*}

Hence,

(3)   \begin{align*} f(x)  & = 2x - \ln(x) - 2\ln(x-2) \\ f'(x) & = 2 - \frac{1}{x} - \frac{2}{x-2} \\ & = 2 - \frac{1}{1} - \frac{2}{1-2} \quad \text{at} \ x = 1 \\ & = 3. \end{align*}

Therefore, f'(1) = 3.

Leave a Reply

Your email address will not be published. Required fields are marked *