One Problem at a Time

Derivative with Logarithmic Differentiation

Problem 109: Find the derivative of f(x) using logarithmic differentiation when f(x) = x^{e^x}.

Solution: We will take the derivative of f(x) using logarithmic properties. That is,

(1)   \begin{align*} f(x) & = x^{e^x} \\ \ln(f(x)) & = \ln(x^{e^x}) \\ \ln(f(x)) & = e^x \cdot \ln(x) \quad \text{(property of logarithm)}. \end{align*}

Differentiating both side we get

(2)   \begin{align*}\frac{1}{f(x)} \cdot f'(x) & = e^x \cdot \ln(x) + \frac{e^x}{x} \\ f'(x) & = f(x) \cdot \left(e^x \cdot \ln(x) + \frac{e^x}{x} \right) \\ & = x^{e^x} \cdot \left(e^x \cdot \ln(x) + \frac{e^x}{x} \right) . \end{align*}

That is,

(3)   \begin{equation*} \boxed{f'(x) = x^{e^x} \cdot \left(e^x \cdot \ln(x) + \frac{e^x}{x} \right)}. \end{equation*}

Leave a Reply

Your email address will not be published. Required fields are marked *